Home ranges in adult Scandinavian brown bears (Ursus arctos): effect of mass, sex, reproductive category, population density and habitat type

Publication Type:Journal Article
Year of Publication:2003
Authors:Erickson, GM, A. Lappin, K, Vliet, KA, Dahle, B, Swenson, JE
Journal:Journal of Zoology
Volume:260
Date Published:2003
ISBN Number:1469-7998
Keywords:Ursus arctos
Abstract:

American alligators Alligator mississippiensis undergo major transformations in morphology and ecology during development. These include several thousand-fold changes in body mass, modified snout and dental proportions, and shifts in diet from small, delicate foodstuffs to the inclusion of increasingly larger, more robust prey. How these changes in anatomical form contribute to actual physical performance and niche use is largely unknown. In the present study, bite-force measurements for 41 specimens of A. mississipiensis, were made throughout ontogeny (hatchling–older adults) using a series of precision force transducers. How this performance indicator scaled with respect to cranial and whole-body measurements was determined. Bite-force production throughout development was contrasted with ontogenetic changes in trophic ecology. The influences of this performance measure on these changes were then analysed. The results showed a 800-fold range (12–9452 N) of bite forces with values positively correlating with increases in body size. Scaling of biting forces through ontogeny showed positive allometry with respect to body mass, head length, jaw length, snout–vent length and total length. These patterns may be attributable to allometric growth of individual skeletal elements (and associated musculature), and/or progressive fusion and ossification of skull and jawbones during development. The overall pattern of force increase throughout ontogeny did not vary in association with major shifts in diet. Notably, the bite-force values for adult A. mississippiensis are the highest measured for any living animal and represent the first measures for a large crocodilian. Additionally, these data provide the first documentation of how bite force changes during ontogeny in a reptile. By bridging the rich morphological and ecological databases for these animals, this study opens the door to a comprehensive understanding of feeding in A. mississippiensis. Furthermore, it provides groundwork for standardized comparative studies of feeding among crocodilian, reptilian, or other gnathostome vertebrates.Annual home-range size indices for 36 male and 52 female adult brown bears Ursus arctos in two study areas in central and northern Scandinavia were estimated to evaluate factors believed to influence home-range size. Male home ranges were larger than home ranges of lone females after controlling for the sexual size dimorphism acting on metabolic needs. Further, home ranges of females with cubs were smaller than home ranges of lone females and females with yearlings. Thus, differences in metabolic need were not able to explain the variation in range size among females of different reproductive categories or between males and females, suggesting roaming behaviour of males in this promiscuous species. Home-range size in both males and females was inversely related to population density along a density gradient that was not linked to food availability. This contradicts the hypothesis that females use the minimum areas that sustain their energy requirements. However, on a large geographical scale a negative relationship between range size and food availability was evident. The annual home ranges in inland boreal environments in Scandinavia are the largest reported for brown bears in Eurasia, and similar to those in inland boreal and montane environments in North America.

URL:http://dx.doi.org/10.1017/S0952836903003753
Taxonomic name: 
Thu, 2014-03-20 12:47 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//mammals.indianbiodiversity.org/sites/all/modules/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith