The buoyancy of the integument of Atlantic bottlenose dolphins (Tursiops truncatus): Effects of growth, reproduction, and nutritional state

Publication Type:Journal Article
Year of Publication:2010
Authors:Dunkin, RC, McLellan, WA, Blum, JE, D. Pabst, A
Journal:Marine Mammal Science
Volume:26
Pagination:573-587
Date Published:2010
ISBN Number:1748-7692
Keywords:Tursiops truncatus
Abstract:

In Atlantic bottlenose dolphins (Tursiops truncatus) the thickness and lipid content of blubber (the integument's specialized hypodermis) varies across ontogeny and with reproductive and nutritional state. Because the integument comprises up to 25% of total body mass in this species, ontogenetic changes in its lipid content may influence whole body buoyancy. The density and volume of the integument were measured and its buoyancy calculated across an ontogenetic series of dolphins and in pregnant and emaciated adults (total n= 45). Regional differences between the metabolically labile trunk integument and the structural tailstock integument were also investigated. Mean densities of both trunk and tailstock integument were similar across life history categories (trunk = 1,040.7 ± 14.1 kg/m3; tailstock = 1,077.1 ± 21.2 kg/m3) and were statistically similar to the density of seawater (1,026 kg/m3). The mean buoyant force of integument from the trunk (−1.01 ± 1.74 N) and tailstock (−0.30 ± 0.21 N) did not vary significantly across ontogeny. In contrast, pregnancy and emaciation did influence the integument's buoyancy, which ranged between 9 N and −45 N in these categories. Although neutral during growth, the integument's contribution to whole body buoyancy can be influenced by an individual's reproductive and nutritional status.

URL:http://dx.doi.org/10.1111/j.1748-7692.2009.00353.x
Thu, 2014-03-20 12:46 -- admin
https://secure.gravatar.com/avatar/5ade1b012674ce3dd941e2ea5dd15cc1.jpg?d=https%3A//mammals.indianbiodiversity.org/sites/all/modules/contrib/gravatar/avatar.png&s=100&r=G
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith